
Tom Peterka	

tpeterka@mcs.anl.gov	

http://www.mcs.anl.gov/~tpeterka	

Mathematics and Computer Science Division	

Distributed Data Analysis at Scale	

Analysis, Storage, and Privacy for Big Data Seminar	

JSM 2016	

August 4, 2016	

“Data movement, rather than computational processing, will be the
constrained resource at exascale.” – Dongarra et al. 2011.	

Examples	

2	

Computational geometry in
molecular dynamics

Ridge detection in
meteorology

Density estimation	

in cosmology

Common Data Movement Layer	

3	

Analysis Algorithm
Stochastic Linear Algebra

Iterative Nearest Neighbor

OS / Runtime

Application

Data Movement

Analysis Algorithm

Application

OS / Runtime

Master

Block execution

Block loading

Assigner

Mapping blocks
to

processes

Decomposer

Comm. links

Decomposition

Communication

Global reduction

Local neighbor

I/O

Independent

Collective

Algorithms

K-d tree

Parallel sort

Tom Peterka Dmitriy Morozov	

github.com/diatomic/diy2	

DIY is a programming model and runtime for HPC block-parallel data analytics.	

•  Block parallelism	

•  Flexible domain decomposition and assignment to resources	

•  Efficient reusable communication patterns	

•  Automatic dual in- and out-of-core execution	

•  Automatic block threading	

Basic Concepts	

4	

Partition Data Into
Blocks	

5	

The block is the basic
unit of data
decomposition. Original
dataset is decomposed
into generic subsets
called blocks, and
associated analysis items
live in the same blocks.
Blocks don’t have to be
“blocky.” Any
subdivision of data (eg., a
set of graph nodes, a
group of particles, etc.) is
a block.	

Structured Grid

AMR Grid

Unstructured Mesh

Graph

Multiple Regular Decompositions	

6	

���������	�
�
����
���
�	��������
���

�����������	���
�	��
��������
������
����������

�������	�

�	�
����	��������
���

����������������
����
����
������
��	����	��������	��
����������
�����
����������

���������	�
���
��
��
����
� ���	�
���������
��
��
����
���
�����

���

���	�
���������
�����
�����
�	���
�
� ���
��
��	����������	���
��	�
���

	

1.  Decomposition

can be a regular
grid of blocks or a
k-d tree.	

2.  For a regular grid,
constraints on
numbers of
blocks can be
imposed to get
pencil or slab
shapes.	

3.  Multiple
decompositions
can co-exist.	

Neighborhood Links	

7	

	

- Limited-range communication	

- Allow arbitrary groupings	

- Distributed, local data structure and
knowledge of other blocks (not
master-slave global knowledge)	

Two examples of 3 out of a total of 25 neighborhoodsExamples of 3 neighborhoods in a regular grid, unstructured mesh, and graph.	

Communicate over the Link	

8	

DIY provides point to point and different varieties of collectives within a
neighborhood via its enqueue/exchange/dequeue mechanism. 	

�����������	�
���
�
����
�����
�

��
������
�����
��
���	

��������������
�����

��������������
�����
�����
���������������������
��

�������������������������
�����
�
����
��
���������	�����
�
��
�

How to enqueue items
for neighbor exchange	

•  DIY offers several
options	

•  Send to a particular
neighbor or neighbors,
send to all nearby
neighbors, send to all
neighbors	

•  Support for periodic
boundary conditions	

Global
Communication

Patterns	

9	

Round 0
k = 4 0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

Round 1
k = 2

Results

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

Round 0
k = 4

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

8 10 12 14

8 12

Round 1
k = 2

Results

Swap-reduce	

Merge-reduce	

// initialization	

Master master(world, num_threads, mem_blocks, ...); 	

ContiguousAssigner assigner(world.size(), tot_blocks); 	

decompose(dim, world.rank(), domain, assigner, master);	

	

// compute, neighbor exchange	

master.foreach(&foo);	

master.exchange();	

	

// reduction	

RegularSwapPartners(dim, tot_blocks, k); 	

reduce(master, assigner, partners, &foo);	

	

// callback function for each block	

void foo(void* b, const Proxy& cp, void* aux) 	

{	

 for (size_t i = 0; i < in.size(); i++) 	

 cp.dequeue(cp.link()->target(i), incoming_data); 	

 // do work on incoming data	

 for (size_t i = 0; i < out.size(); i++) 	

 cp.enqueue(cp.link()->target(i), outgoing_data[i]);	

}	

Example Usage	

10	

One Example in Detail	

11	

Self-Adaptive Density Estimation���
���

Sampling a regular density field from a distribution of particle positions
using a Voronoi tessellation as an intermediate data model.	

12	

Key Ideas 	

• Convert discrete particle data into continuous function that can be
interpolated, differentiated, interpolated, represented as a regular grid (field)	

• Automatically adaptive window size and shape	

• Comparison with CIC using synthetic and actual data	

• Voronoi tessellation and density estimation computed in parallel on
distributed-memory HPC machines	

	

Estimation Kernels	

13	

CIC	

Fixed size and shape	

TESS	

Variable size and shape	

In cloud-in-cell (CIC) methods,
particles are distributed to a
fixed number of grid points.	

In tessellation (TESS) methods, particles are
distributed to a variable number of grid points

according to the Voronoi or Delaunay
tessellation that has variable size and shape cells.	

Overall Algorithm	

14	

for (all Voronoi cells) {	

	

 compute grid points in Voronoi cell interior	

 	

 for (all interior grid points) {	

	

 if (grid point is inside local block)	

 add mass contribution to grid point	

 	

 else	

 send mass contribution to neighbor block 	

 containing grid point and add it there	

	

 if (2D projection) {	

 accumulate mass at 2D pixel	

 divide by pixel area for 2D density	

 } 	

	

 else	

 divide by voxel volume for 3D density	

	

 } // interior grid points	

	

} // Voronoi cells	

�

��������	���
����
�����
���
�����
�����
�
����������
����
���
������������
��������
��������
�
���
�
�������������
��

��������
���������
�����������
������
�����
��� �
�
���������������������

����

Accuracy	

15	

Navarro-Frenk-White (NFW)	

16	

k is a constant, 1 for us	

	

ρ(r) is Monte Carlo sampled
to get test set of particles	

	

Ground truth is 2D plot of 	

ρ(r)	

	

We limit r to [-1.5, 1.5] and
NFW(r) to 106	

	

	

Synthetic dataset derived from an analytical density function commonly used in
cosmology.	

NFW 2D Density Fields	

17	

Analytical	

 TESS	

 CIC	

Top row:	

10243 3D density projected
to 10242 2D density field
and rendered in ParaView	

Bottom row:	

Ratio of analytical divided

by estimated density	

TESS	

18	

Comparison between analytical 2D
density and estimated density at	

 y = 0 cross section	

Ratio between analytical 2D density
divided by estimated density at	

 y = 0 cross section	

19	

CIC	

Comparison between analytical 2D
density and estimated density at	

 y = 0 cross section	

Ratio between analytical 2D density
divided by estimated density at	

 y = 0 cross section	

Complex NFW (CNFW)	

20	

�1.5 �1.0 �0.5 0.0 0.5 1.0 1.5
�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

3

4

5

6

7

Our second synthetic dataset is a combination of several NFWs of varying cutoff
densities and asymmetric scaling factors.	

Analytical cutoff density
contours	

2e5 sampled particles	

 Voronoi tessellation	

CNFW 2D
Density Fields	

21	

Top row:	

10243 3D density projected
to 10242 2D density field
and rendered in ParaView	

Bottom row:	

Ratio of analytical divided

by estimated density	

Analytical	

 TESS	

 CIC	

Peterka et al., High-Performance Computation of Distributed-Memory Parallel 3D Voronoi and Delaunay Tessellation. SC14.

Performance of Voronoi Tessellation	

22	

Strong and weak scaling for up
to 20483 synthetic particles and
up to 128K processes
(excluding I/O) shows up to
90% strong scaling and up to
98% weak scaling.	

With Dmitriy Morozov and Carolyn Phillips [github.com/diatomic/tess2]	

Left: Strong scaling of
estimating the density of 5123
synthetic particles onto grids
of various sizes.	

23	

Performance of Density Estimation	

With Hadrien Croubois, Nan Li, Steve Rangel, and Franck Cappello

Peterka et al., Self-Adaptive Density Estimation, SIAM SISC 2016.

 [github.com/diatomic/tess2]	

Below: Density estimation
of one halo of dark matter
particles in a cosmology
simulation	

Recap���
	

24	

How to DIY Data Analysis	

DIY data movement library for parallelizing data analysis	

• Decompose data into blocks	

• Assign blocks to processing elements	

• Have several decompositions at once	

• Overload blocks, migrate blocks between processing elements	

• Communicate between blocks	

• Migrate blocks in and out of core	

• Thread blocks with finer-grained processing elements	

Tessellation-based density estimation example	

•  Parameter-free	

•  Shape-free	

• Automatically adaptive	

• Higher quality estimation in high-contrast data	

•  Scalable parallel performance	

	

	

	

25	

References	

26	

DIY Papers	

•  Peterka, Ross, Kendall, Gyulassy, Pascucci, Shen, Lee, Chaudhuri: Scalable Parallel Building

Blocks for Custom Data Analysis. LDAV 2011.	

•  Peterka, Ross: Versatile Communication Algorithms for Data Analysis. EuroMPI 2012.	

•  Morozov, Peterka: Block-Parallel Data Analysis with DIY2. Submitted to LDAV 2016.	

Selected DIY Application Papers	

•  Morozov, Peterka: Efficient Delaunay Tessellation through K-D Tree Decomposition. To

appear SC16.	

•  Peterka, Croubois, Li, Rangel, Cappello: Self-Adaptive Density Estimation of Particle Data.

SIAM Journal on Scientific Computing SISC Special Section on CSE 2015. 	

•  Peterka, Morozov, Phillips: High-Performance Computation of Distributed-Memory

Parallel 3D Voronoi and Delaunay Tessellation. SC14.	

•  Lu, Shen, Peterka: Scalable Computation of Stream Surfaces on Large Scale Vector Fields.

SC14.	

•  Nashed, Vine, Peterka, Deng, Ross, Jacobsen: Parallel Ptychographic Reconstruction. Optics

Express 2014.	

•  Gyulassy, Peterka, Pascucci, Ross: The Parallel Computation of Morse-Smale Complexes.

IPDPS 2012.	

•  Nouanesengsy, Lee, Lu, Shen, Peterka: Parallel Particle Advection and FTLE Computation

for Time-Varying Flow Fields. SC12. 	

•  Chaudhuri, A., Lee-T.-Y., Zhou, B., Wang, C., Xu, T., Shen, H.-W., Peterka, T., Chiang, Y.-J.:

Scalable Computation of Distributions from Large Scale Data Sets. LDAV 2012.	

	

Tom Peterka	

tpeterka@mcs.anl.gov	

http://www.mcs.anl.gov/~tpeterka	

Mathematics and Computer Science Division	

Facilities	

Argonne Leadership Computing Facility (ALCF)	

Oak Ridge National Center for Computational Sciences (NCCS)	

National Energy Research Scientific Computing Center (NERSC)	

	

Funding	

DOE SDMAV Exascale Initiative	

DOE SciDAC SDAV Institute	

	

People	

Dmitriy Morozov (LBNL)	

Acknowledgments

github.com/diatomic/diy2	

github.com/diatomic/tess2	

	

	

	

Analysis, Storage, and Privacy for Big Data Seminar	

JSM 2016	

August 4, 2016	

